

HVDC-WISE

CIGRE SESSION 2024

C1-C4 WORKSHOP "RESILIENCE BY DESIGN"

HVDC-WISE is supported by the European Unions' Horizon Europe program under agreement 101075424.

UK Research and Innovation (UKRI) funding for **HVDC-**WISE is provided under the UK government's Horizon Europe funding guarantee [grant numbers 10041877 and 10051113].

The HVDC-WISE Project

Speakers:

FLORENT MOREL

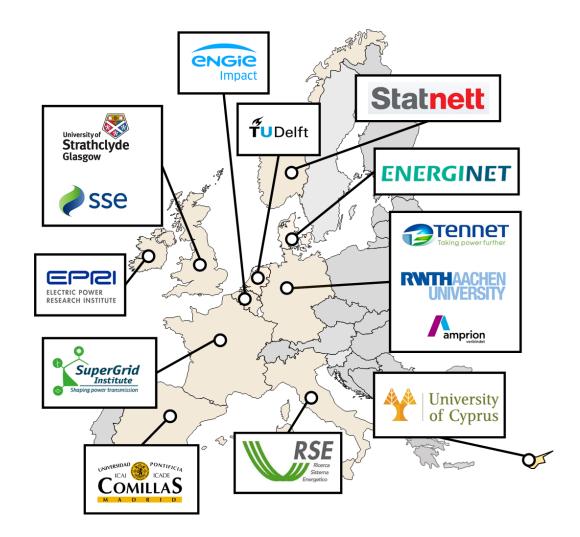
SUPERGRID INSTITUTE

COLIN FOOTE

THE NATIONAL HVDC CENTRE

AGENDA

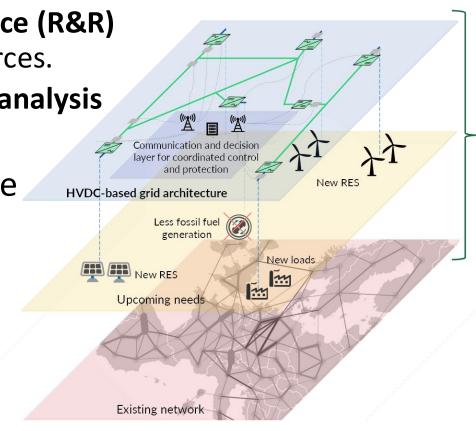
- Project introduction
- Views on resilience related to HVDC systems
- Example results



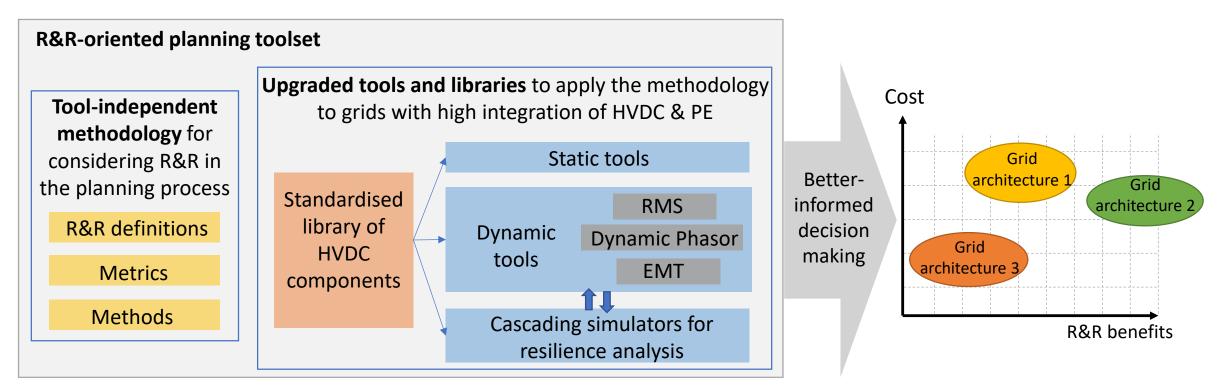
PROJECT INTRODUCTION

HVDC-based grid architectures for reliable and resilient **WI**de**S**pr**E**ad hybrid AC/DC transmission systems

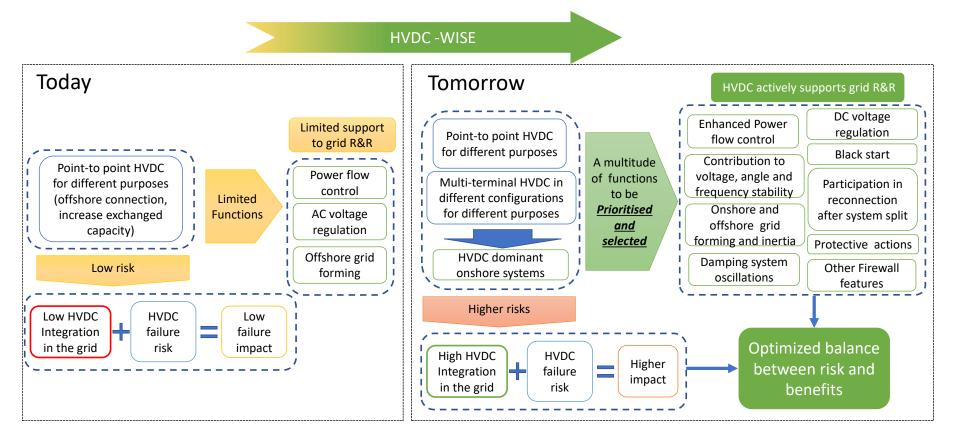
- Duration: 42 months (October 2022 to March 2026)
- 14 partners from 10 different countries



5


GENERAL OBJECTIVE

- The goal of HVDC-WISE is to contribute to the development of hybrid AC/DC transmission grids by :
 - Identifying HVDC-based grid architectures that can be deployed to enhance system reliability and resilience (R&R) and facilitate the integration of new renewable sources.
 - Creating new R&R-oriented network planning and analysis tools.
- HVDC-based grid architecture concepts are the combination of:
 - ► HVDC configurations
 - ⊢ Technological components
 - ⊢ Operation algorithms (C&P)
 - ⊢ Deployment plan



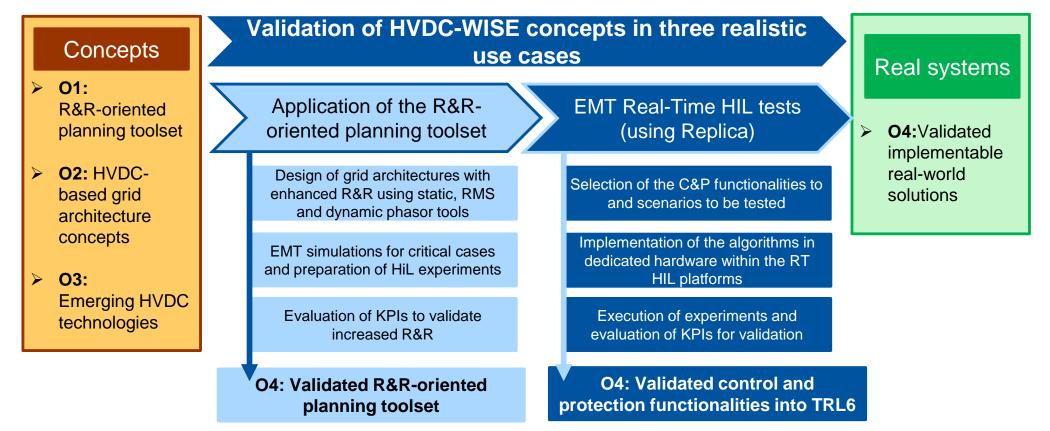
To develop complete reliability-&-resilience-oriented planning toolsets (metrics, methodology, and tools) with appropriate representation of different HVDC-based grid architecture concepts aiming to fulfil transmission system operators needs.

To identify, propose and compare different HVDC-based grid architecture concepts aiming to address TSOs' reliability and resilience needs for widespread AC/DC systems.

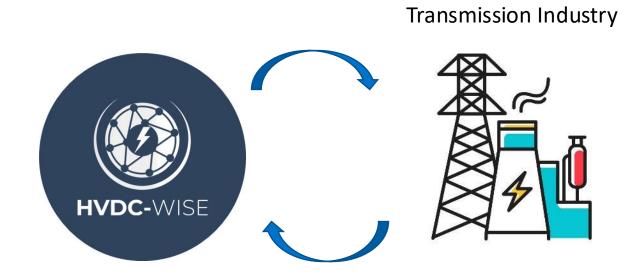
To identify, assess, and model emerging technologies for HVDC-based grid architecture concepts needed for the deployment of widespread AC/DC transmission grids.

Selection

- Features, potential and limitations
- Technical readiness and technological challenges


Modelling

- Models in a standardized library
- Evaluation of key parameters allowing architecture selection


Models allowing resilienceoriented planning

To validate in an industrially relevant environment the resilience-oriented planning toolset and the HVDC-based grid architecture concepts on three realistic use cases.

To prepare for the adoption and deployment of the proposed solutions by the industry.

WORK BREAKDOWN STRUCTURE

Phase 1: Definitions, expectations and solutions (grid architectures and R&R-oriented planning toolset)

Phase 2: Value demonstration

WP2 : Requirements, opportunities, frameworks, and demonstration needs for R&R of future AC/DC systems

WP3 : Concept architectures for reliable and resilient AC/DC systems

WP6 : R&R-oriented network expansion planning methodology: application to use cases

WP7 : Validation of control and protection concepts on EU representative use cases

WP4 : Enabling technologies for future AC/DC hybrid systems

WP5 : Simulation tools for R&R-oriented planning and operation of hybrid AC/DC power systems

SuperGrid

Two transversal WPs

WP8 : Pathways towards hybrid AC/DC grids: dissemination and exploitation

WP1 : Project management

Thank you!

Follow

Contact info@hvdc-wise.eu

HVDC-WISE is supported by the European Unions' Horizon Europe program under agreement 101075424.

Innovate UK supports **HVDC-**WISE project partners through the UK Research and Innovation Horizon Europe Guarantee scheme.

RESILIENCE RELATED TO HVDC SYSTEMS

DR COLIN FOOTE

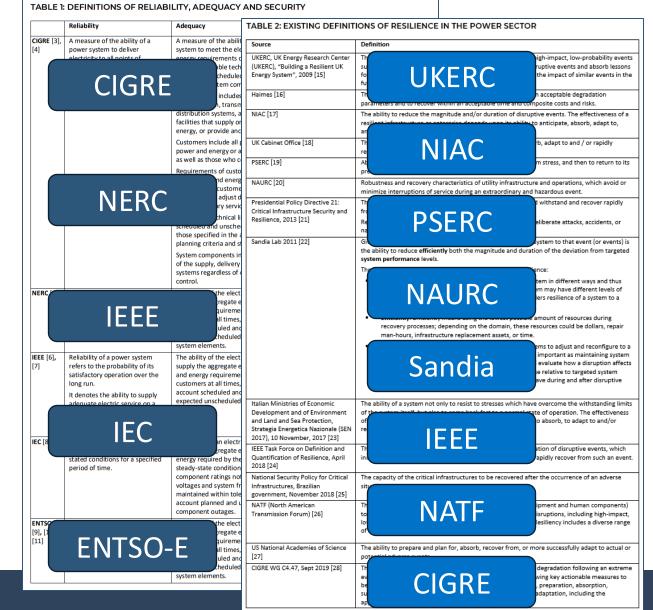
THE NATIONAL HVDC CENTRE (SSEN TRANSMISSION)

HVDC-WISE is supported by the European Unions' Horizon Europe program under agreement 101075424.

UK Research and Innovation (UKRI) funding for **HVDC-**WISE is provided under the UK government's Horizon Europe funding guarantee [grant numbers 10041877 and 10051113].

D2.1: RESILIENCE NEEDS AND OBJECTIVES

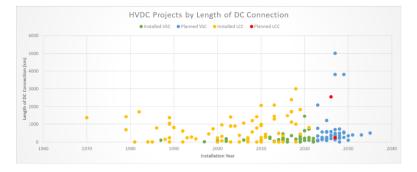
- Review of industry definitions of reliability and resilience in power systems
- TSO expectations for R&R with the deployment of HVDC solutions within their networks
- Survey of existing and planned HVDC links (useful spreadsheet resource available to download)
- Identifying opportunities, risks and barriers for HVDC in delivering R&R benefits
- Outline of research objectives for remainder of the project
- Initial views on codes, standards and regulatory framework issues
- Examples of hybrid AC/DC architectures

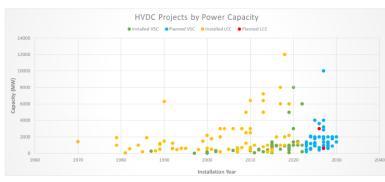

Deliverable 2.1 Resilience Needs and Objectives

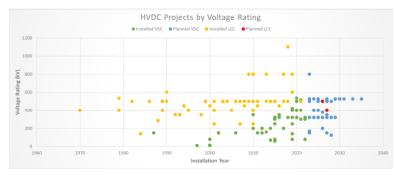
DEFINING RELIABILITY AND RESILIENCE

- Detailed review of literature on R&R concepts
- Reliability is widely understood
 - \rightarrow Adequacy
 - \rightarrow Security
- Resilience has different interpretations
- HVDC-WISE using definition from CIGRE WG C4.47:

ability to limit the extent, severity, and duration of system degradation following an extreme event






SURVEY OF EXISTING AND PLANNED HVDC LINKS

lutoSave 🐽 💀 🦻		D2.1 Appendix		isting and Pla		tenodo_upload_220323 •	Last Modified: J	ust now 🗸	₽ Search							Foote, Colin 👔		
Home insert	Page Layor	at Formulas	Data F	Review V	riew Auton	nate Help											Comments	남 Share ~
DB Come y	Calibri	~ 11 → A^			ce			-		lormal	Bad	Good 🗸	🎛 🎛 🗄	H Tell-	Sum Ž		S	
Se Sormat Painter	B I <u>U</u> ∽	🖽 • 🔷 • 📕	· =	= =	🖭 🔛 Merge	e & Center 👻 🕎 🗸	% 🤊 🔝 -		al Format as 👔 ~ Table ~	leutral	Calculation	Check Cell	Insert Delete Form	sat 🞸 Clear	r * Filter * Sel		Sensitivity	
Clipboard F ₃		Font	5	A	Jignment	5	Number	r <u>s</u> i			ityles		Cells		Editing	Analysis	Sensitivity	
• • I ×	$\sqrt{-f_{\rm X}}$																	
A	B	C Jumber of terminals	D VSC/LCC	E Structure	F	G Purpose	Million	is being linked	н		Connection Turns	J Reference (where available		K Continent	L Country/Countries	M Voltage (kV)	N Capacity (MW)	O Underground/Sul
		*		structure		·	-				·		· · · · · · · · · · · · · · · · · · ·	~	· · · · · · · · · · · · · · · · · · ·	✓	*	Cable Length (k
hateauguay	828	2	VSC			Energy trading		onnecting AC gri			DC1-AC1	https://www.hitachiener studies/chateauguay			Canada	140	1000	0
Sotland	P2P	2	VSC		monopole	Energy trading		Interconnecting AC grids			DC1-AC1	https://www.hitachiener studies/the-gotland-hvd		Sweden	150	260	93	
Hallsjon	P2P	2	VSC		Symmetric monopole	Energy transfer of pow- load centres		Renewables to load centres within a power system			DC1-AC1	https://www.hitachiener studies/hallsjon-the-firs		Sweden	10	3	0	
Directlink	P2P	2	VSC		Symmetric monopole	Energy trading	Interd	Interconnecting AC grids			DC1-AC2	https://www.hitachiener t-us/case-studies/terran		Australia	80	180	65	
lagie Pass	828	2	VSC	2 level	Symmetric monopole	Energy trading	Interc	Interconnecting AC grids			DC1-AC1	https://www.hitachiener studies/eagle-pass	America	USA	15.9	36	0	
Tjaereborg	P2P	2	VSC		Symmetric monopole	Connection to offshore renewables	Offsh	Offshore wind to onshore power system			DC1-AC1	https://www.hitachiener t-us/case-studies/tjaere		Denmark	9	7	4	
Cross Sound Cable	P2P	2	VSC	3 level	Symmetric	Energy transfer of pow load centres	er to Impro	Improve reliability of supply to area			DC1-AC1	https://www.hitachiener t-us/case-studies/cross-	America	USA	150	330	40	
Murraylink	P2P	2	VSC	3 level	Symmetric monopole	Energy trading	Inter	Interconnecting AC grids			DC1-AC1	https://www.hitachiener studies/murraylink		Oceania	Australia	150	220	180
Estlink	P2P	2	VSC	2 level	Symmetric	Energy trading	Interd	Interconnecting AC grids			DC1-AC1	https://www.hitachiener t-us/case-studies/estlin		Europe	Estonia-Finland	150	350	105
Caprivi Link	P2P	2	VSC	2 level	Asymmetrical	Stabilize a weak area power system	of the Weak	area of the pow	er system to the	bulk power	DC1-AC1	https://www.hitachiener us/case-studies/caprivi-		Africa	Namibia	350	300	0
Trans Bay Cable	P2P	2	VSC	MMC	Symmetric	Power flow control	Energ	Energy transfer within a power system			DC1-AC1	https://www.transbaycat	ole.com/	America	USA	200	400	86
Valhall	P2P	2	VSC	2 level	Asymmetrical monopole	Power supply to offsho and gas fields	re oil Offsh	Offshore oil and gas field to onshore power system				https://www.hitachiener studies/valhall_	gy.com/about-us/case-	Europe	Norway	150	78	292
Borwin1	P2P	2	VSC	2 level	Symmetric monopole	Connection to offshore renewables	Offsh	Offshore wind to onshore power system			DC1-AC2	https://www.hitachiener studies/borwin1	gy.com/about-us/case-	Europe	Germany	150	400	200
East West Interconnector	P2P	2	VSC	2 level	Symmetric monopole	Energy trading	Inter	Interconnecting AC grids			DC1-AC1	"Overview of the 500MW Interconnector, consider Execution-Phase Issues"	ing System Design and	Europe	Ireland-GB	200	500	261
Nan'ao Island	MTDC	3	VSC	MMC	Symmetric monopole	Energy trading	Inter	Interconnecting AC grids			DC3-AC3	https://www.nhk.co.uk/s hvdc-transmission/sman transmission/nanao-mu	olutions/smart-vsc- t-vsc-hvdc-	Asia	China	160	200	11
Mackinac	828	2	VSC	MMC	Symmetric monopole	Enhance grid stability		Weak area of the power system to the bulk pov system			DC1-AC1	https://www.hitachiener studies/mackinac		America	USA	71	200	0
Zhoushan	MTDC	5	VSC	MMC	Symmetric monopole	Energy trading	Intere	onnecting AC gri	ds		DC4-AC3	www.cepri.com.cn/aid/d	etails 71 262.html	Asia	China	200	400	129
Aland	P2P	2	VSC		Symmetric	Energy trading	Interc	onnecting AC gri	ds		DC1-AC1	https://www.hitachiener	gv.com/about-us/case-	Europe	Finland	80	100	158
BorWin2	P2P	2	VSC	MMC	Symmetric	Connection to offshore	Offsh	ore wind to onsh	ore power syste	m	DC1-AC2	https://www.tennet.eu/p	projects/borwin2	Europe	Germany	300	800	200
BorWin2 Cover Page		-	Graphics	MMC (+)	symmetric	connection to offshore	Offsh	ore wind to onsh	ore power syste	m		https://www.tennet.eu/g	projects/borwin2	Europe	Germany	300	800	2

- Published as spreadsheet to support data filtering and analysis
- Comprehensive list of projects
 →157 VSC
 - \rightarrow 75 LCC
- Assessed in terms of Type, Purpose, Topology, kV, MW
- Trends reviewed with R&R opportunities and vulnerabilities
 - \rightarrow More VSC, bipoles, multi-terminal
 - ightarrowIncreasing power rating and voltage
- Emerging common designs

TSO COMMON ISSUES OF CONCERN

- HVDC converters offer the potential to act as the foundation of stability in the future hybrid AC/DC system, but it is recognised that new solutions will be required.
- HVDC converters depend on programmable control software and do not have an inherent overload capability, leading to a risk of very fast changes in condition from acceptable operation to failure.
- Multiple issues relating to system stability and power quality in hybrid AC/DC systems must be addressed.
- Future hybrid AC/DC systems need to be designed with similar levels of redundancy and dependability to AC systems. There must be fall-back cover for failure of any higher-level grid controller or communications
- Dependence on digital information for the functioning of the entire system raises concerns around cyber resiliency.

EVENTS AND DISTURBANCES

Root causes

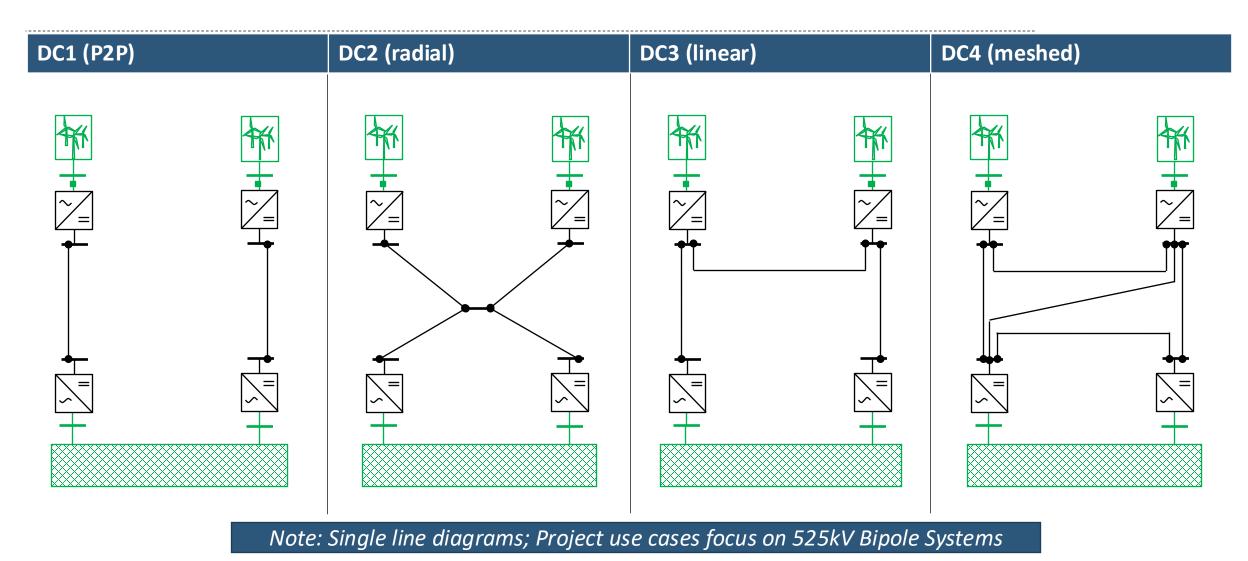
- ► Routine faults and operational conditions
- ► Natural events like extreme weather
- ► Physical or cyber attacks

Responses

- ► Very complex combined AC and DC systems may react inappropriately to contingencies
- Expansion of HVDC and its growing influence on the power system means the risks associated with unforeseen or adverse behaviour is a significant threat
- ⊢ Even relatively minor, routine faults or changes of system state may trigger undesired responses

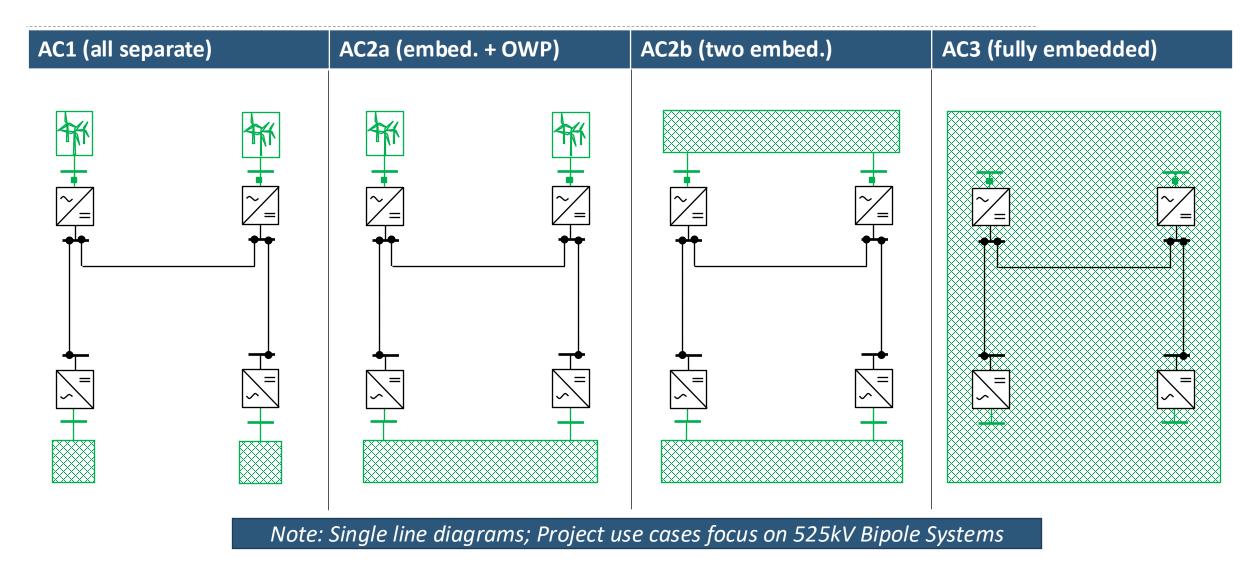
System consequences, TSOs highlighted:

- ► Energy dissipation in offshore hubs
- ⊢ Wide-area system splits
- ► Role for HVDC schemes in system restoration in future hybrid AC/DC systems


ARCHITECTURES FOR AC/DC SYSTEMS

Within the project, the term **HVDC-based grid architecture** is defined as a combination of:

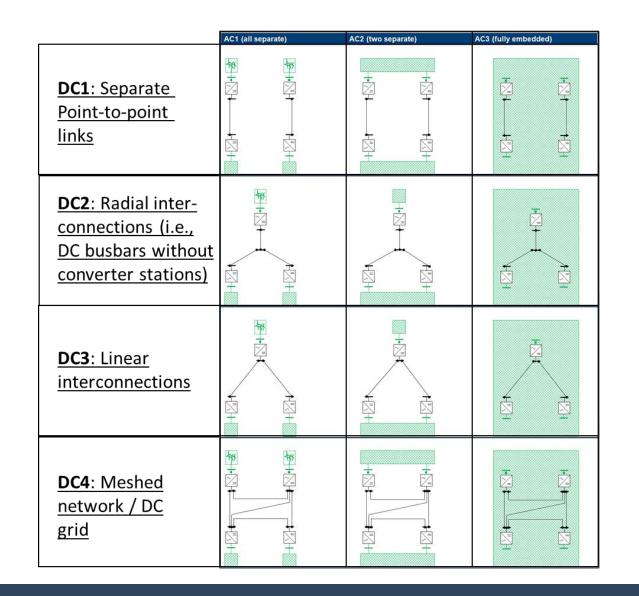
- a) **Purpose** of the HVDC link/network (e.g., interconnection, offshore wind)
- **b)** Embedment level of the HVDC network within the AC system (e.g., fully embedded within one synchronous area)
- **c)** Topology and configuration of the reinforcing infrastructure (point-to-point vs. MTDC, bipolar vs. monopolar, etc.),
- d) Technological components (converters, breakers, storage devices, etc.)
- e) operation algorithms (or operational functions) for control and protection
- f) Deployment plan specifying how to build such grid in a stepwise manner.



DC-SIDE TOPOLOGY

AC EMBEDMENT LEVEL

RESULT: AC/DC MATRIX


Outcome: Classification method with four HVDC topologies and four AC embedment scenarios (matrix)

Horizontal axis:

- AC embedment level
- Each AC system can have different attributes ("grid strength", etc.)

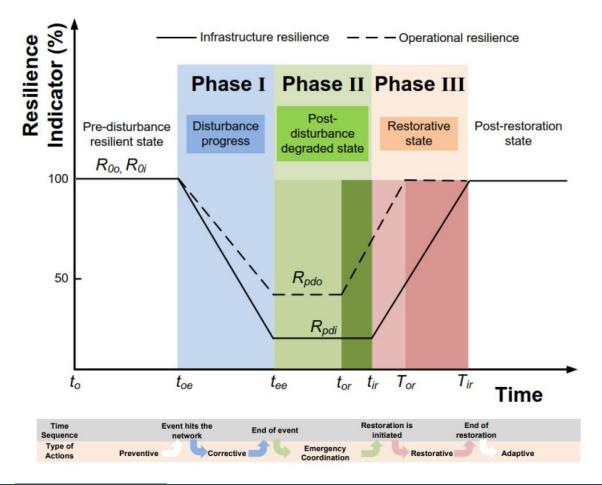
Vertical axis:

- Cross-variation of HVDC topology (regardless of configuration, technology)
- Planned: Extension to also include DC/DC converters

RELIABILITY KPIS

- The proposed KPIs are based on the ENTSO-E CBA guidelines
- But additional KPIs are introduced to capture more complex stability aspects of future power systems (reflecting TSO concerns)
 - ► B6 Adequacy
 - ⊢ B7 Flexibility
 - ► B8 Stability, which includes the following sub-KPIs
 - > B8.0 Angle stability (instead of ENTSO-E "Qualitative stability indicator")
 - > B8.1 Frequency Stability
 - > B8.3 Voltage Stability
 - > B8.4 Converter-Driven Stability (as defined by IEEE)
 - > B8.5 HVDC grid stability (new term for HVDC-WISE)

(ENTSO-E "B8.2 Black start services" considered as part of resilience)


Example Test

Methods
 presented
 for each

RESILIENCE KPIS

Multi-phase resilience trapezoid

CIGRE C4.47 key actionable measures

- Anticipation
- Preparation
- Absorption
- Sustainment of critical system operations
- Rapid recovery
- Adaptation, including the application of lessons learnt

RESILIENCE KPIS

Assessment of specific events

- Phase 1: Disturbance progress
 D1.1: Speed of degradation
 D1.2: Maximum system degradation
 D1.3: Firewall effect
- Phase 2: Post-disturbance degraded state

 \rightarrow D2.1: Duration of degraded state

- Phase 3: Restorative state
 - →D3.1: Type and completion of restoration

Overall KPI

- \rightarrow DO.1: Incapability to serve the load
- \rightarrow DO.2: Total infrastructure unavailability

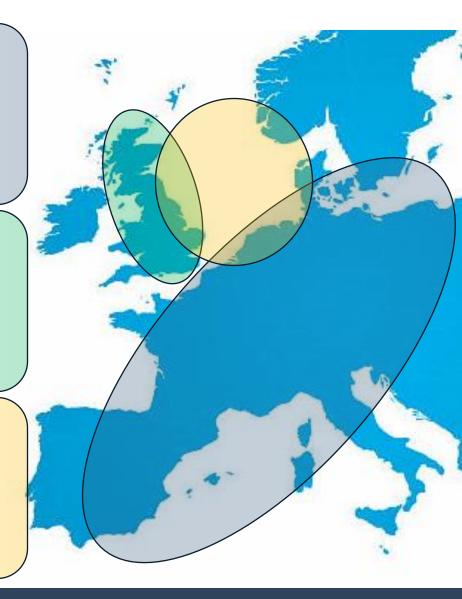
Long-term system assessment

Provides an overall assessment of the power system to various threats/events, by combining their consequences with their probability of occurrence.

- PO.1: Return Period (RP) of events
- PO.2: Expected Energy Not Served (EENS)
- PO.3: Expected duration of outage or outage duration index

USE CASES

1. Large, highly-meshed network


HVDC embedded in single synchronous zone, operating in parallel with AC corridors. System remains AC-dominated. Investigate HVDC overlay grids, interaction risks, impact of failure. Large model enables testing of analysis tools.

2. Small or medium synchronous area

HVDC to transfer power from wind-rich zones onshore and offshore. Connection of large offshore wind plus embedded links forming multi-terminal networks. Investigate hybrid AC/DC grid dominated by HVDC and converters. Smaller model enables analysis of whole system.

3. Multi-purpose offshore HVDC grid

Offshore wind integration and inter-area energy trading. Interconnection of use cases 1 and 2. Need to respect requirements of different areas. Opportunity for new inter-area services while maintaining firewall. Model will interface to UC1 and UC2 models, or reduced equivalents.

OBJECTIVES, EXPECTATIONS AND SUCCESS CRITERIA

- Planning and operation with 100% carbon neutral sources and local dominance of power electronics
- Investigation of technology limitations of power electronics in hybrid AC/DC systems
- Apply the R&R analysis framework for expansion planning in hybrid AC/DC grids
- Propose expansion plans that minimize costs while satisfying technical constraints
- Improve R&R and dynamic behaviour
- Improve operational flexibility of transmission networks
- Prevent negative impact of HVDC solutions
- Grid codes and standards development

- Develop and test
 - \rightarrow New control and protection functions
 - \rightarrow Cyber resiliency analysis
 - ightarrow Models of new technologies
 - → R&R-oriented planning framework and analysis tools

RMS

DyPh

EMT

Real

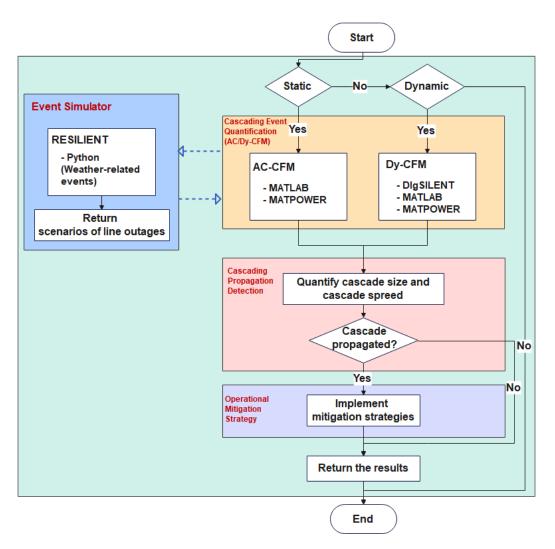
time

- Test and demonstrate solutions in industrially relevant context
- Effective dissemination
 - \rightarrow Roadmap for changes to codes, etc.
 - ightarrow Data, models, tools
 - Training materials, workshops, publications, webinars

EXAMPLE RESULTS

HVDC-WISE is supported by the European Unions' Horizon Europe program under agreement 101075424.

UK Research and Innovation (UKRI) funding for **HVDC-**WISE is provided under the UK government's Horizon Europe funding guarantee [grant numbers 10041877 and 10051113].



DYNAMIC CASCADE FAILURE MODELLING TOOL

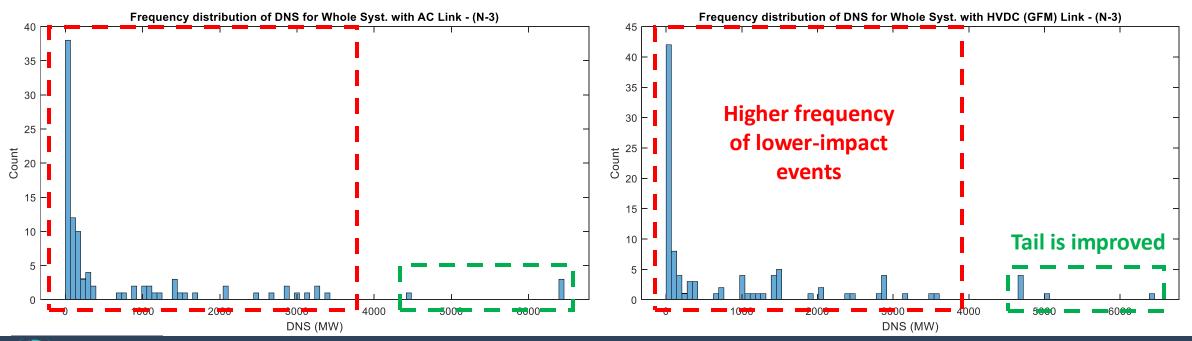
Aim of the Tool:

- To quantify cascading event that benefits from both static and dynamic simulations
- To develop operational mitigation strategies against cascading propagation
- Overall Framework
 - Quantification of cascading failures using specific resilience metrics and KPIs
 - ► **<u>Detection</u>** of cascading propagation
 - ► Operational <u>Mitigation</u> Strategies against Cascading

Propagation

EXAMPLE OF TESTING DY-CFM TOOL

- Test system:
 - ► IEEE 39-bus and 14-bus systems interconnected with an AC link and point-to-point HVDC link
- System Controllers:
 - ► AVR and Governors
- Protective Relays:
 - ► Overcurrent Relays, Under-frequency load shedding, Over/Under frequency generator tripping



EXAMPLE RESULTS WITH DY-CFM

- Cascading analysis was performed using Dy-CFM with and without HVDC link for N-1, N-2, N-3 and randomly generated contingencies
 - Tradeoffs between tail risk mitigation and higher frequency, lower-impact events.
- The simulations are able to quantify the role of HVDC in the cascading propagation in the interconnected system.

CONTROL FUNCTIONALITY

Core Functions <

Swap grid following - grid forming and interplay with DC side
DC-side multi-converter oscillations – supplementary damping control

Supplementary

Functions

AC side stability support by MTDCDetermination of MTDC set points

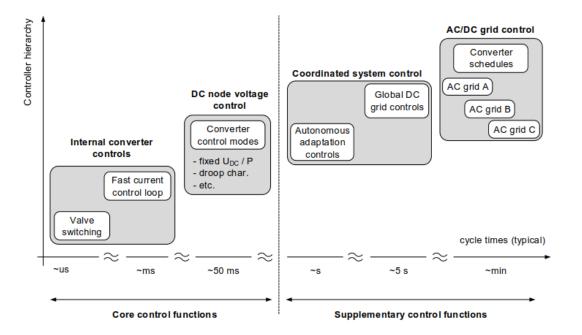
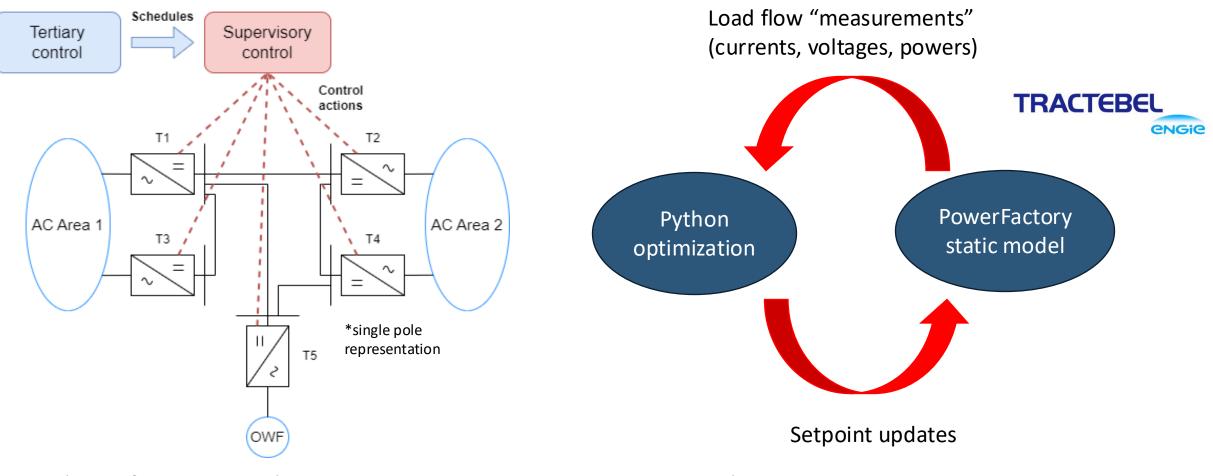
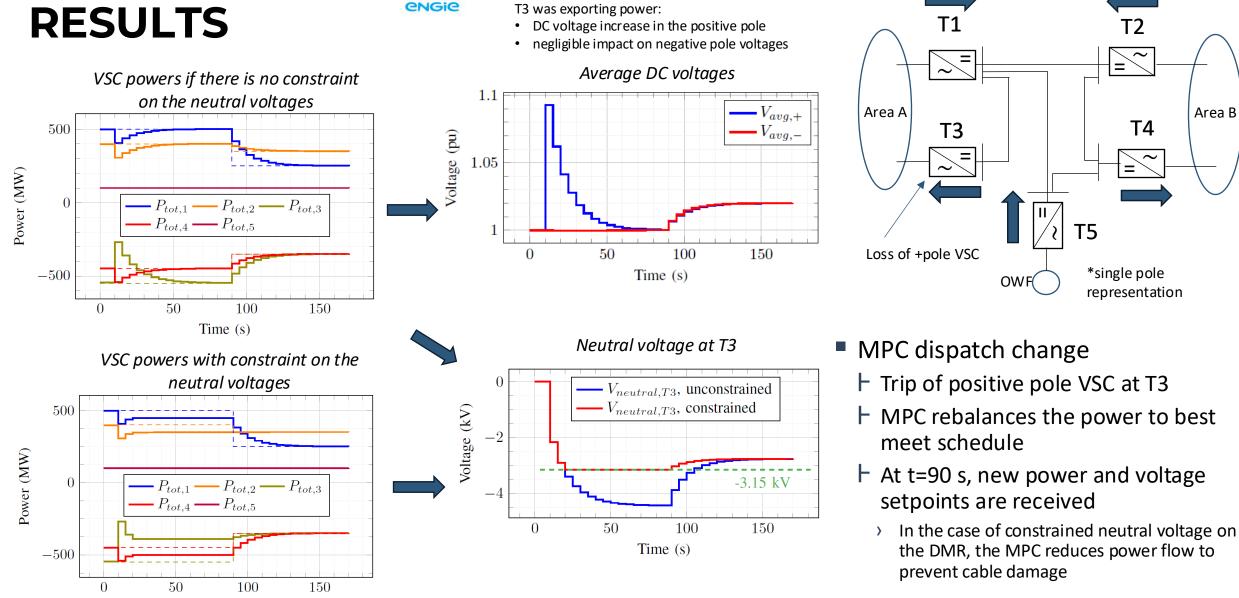



Figure 1: IEC standard guidelines (figure from IEC TS 63291-1:2023) [1]

[1] International Electrotechnical Commission. IEC TS 63291-1:2023. 2023. DOI: IEC TS 63291-1:2023 | IEC Webstore

DETERMINATION OF MULTI-TERMINAL SETPOINTS


- Bipole configuration with DMR
- All terminals dispatchable except T5

- Python optimization using SciPy
- PowerFactory load flow function

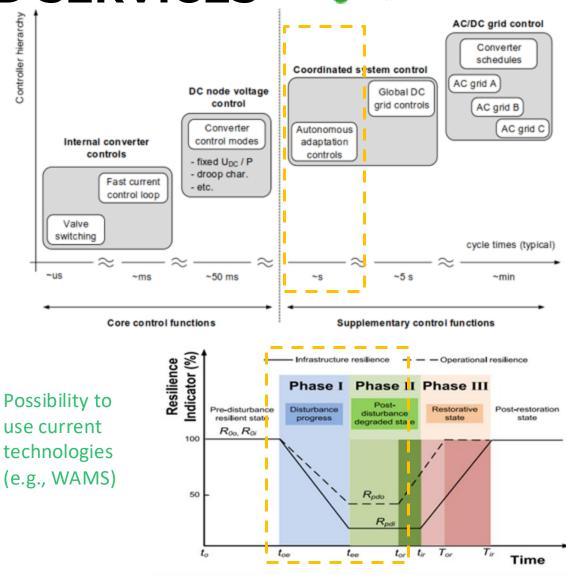
RESULTS

TRACTEBEL

Time (s)

Area B

AC SIDE SUPPORT TARGETED SERVICES


Expected services in HVDC systems

x x
х
x
х
х
х
х
х
х
-
х
х
х
х

Which functionalities can be provided/enhanced via a coordinated control system in the range of hundreds of ms to seconds?

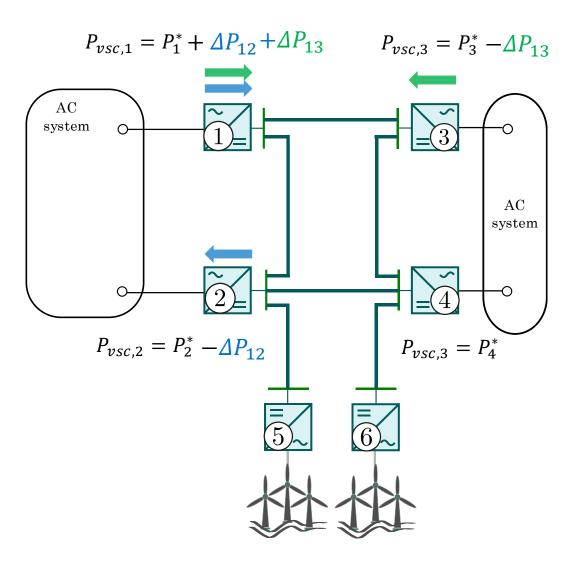
- Low-frequency power oscillation damping (electromechanical oscillations from 0.1 to 1 Hz)
- AC line emulation
- Frequency control

HVDC-WISE

SuperGrid

Institute

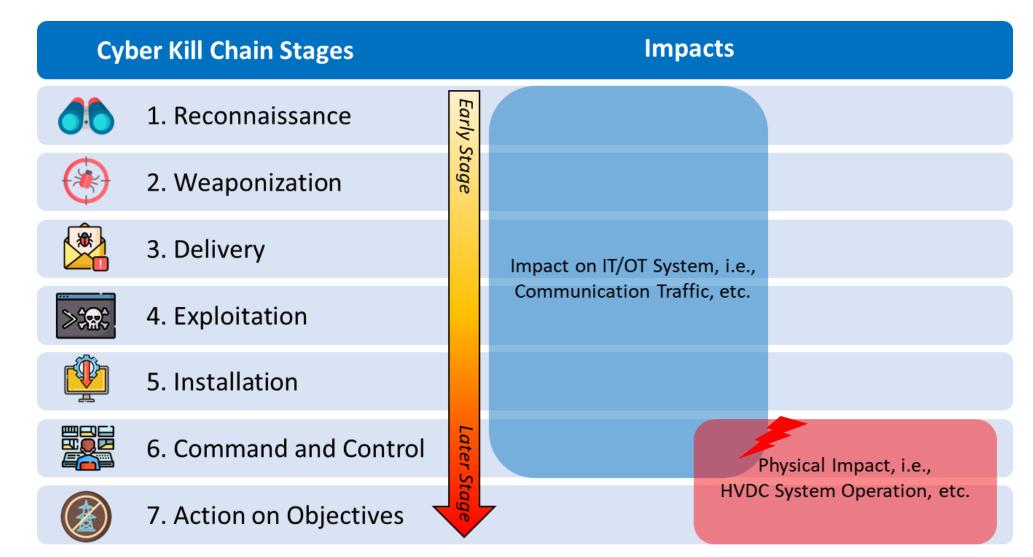
PROPOSED FRAMEWORK


To avoid interfering with the DC voltage control, the **sum of supplementary active power modulations should be zero**.

The "channeling" concept can be used: If converter *i* modulates its power by ΔP_{ij} , converter *j* modulates the same amount of power in the opposite direction, thus $-\Delta P_{ij}$.

Proposed controllers will now have as control input the modulated power of the channel ΔP_{ij} (and no ΔP_1 and ΔP_2 separately).

There can be $\frac{n(n-1)}{2}$ channels, where *n* is the number of dispatchable stations.



CYBER ATTACK SCENARIOS

CYBER RECOMMENDATIONS

1. The importance of the early stages of detection.

Early-stage cyber-attack detection is crucial for minimizing the potential adverse impacts of cyber-attacks in HVDC grids.

2. The mitigation strategies must take into account both physical and cyber anomalies.

3. Implementation of secure protocols.

- ⊢ The IEC 61850 standard is inadequate in dealing with advanced cyber-attack scenarios.
- Every security mechanisms such as the RSA algorithm, which typically functions well in IT systems, may not be effective due to processing time constraints of 4 milliseconds.

4. Communication time latency constraints.

- ⊢ The best possible delay fiber optic communication is 0.5 ms per 100 km.
- ⊢ The delay limit from inherent communication channels and security applications must be considered for implementing the HVDC control and protection mechanism.

5. Proposed a throughput-based anomaly detection in the HVDC operational technology network

- ⊢ The OT traffic originates from automated processes with deterministic and homogeneous characteristics.
- ⊢ Use Graph Convolutional Long Short-Term Memory to identify OT traffic anomalies and pinpoint anomaly locations.

Thank you!

Follow

Contact info@hvdc-wise.eu

HVDC-WISE is supported by the European Unions' Horizon Europe program under agreement 101075424.

Innovate UK supports **HVDC-**WISE project partners through the UK Research and Innovation Horizon Europe Guarantee scheme.